S-Waveplate

Radial polarization converter

S-waveplate converts linear polarization to radial or azimuthal polarization and circular polarization to an optical vortex.

Main features

  • Converts linear polarization to radial or azimuthal polarization.

  • Converts circular polarization to an optical vortex.

  • High 94% transmission @ 1030 nm (no AR coating).

  • Stand-alone – no additional optical elements needed.

  • High damage threshold: 63,4 J/cm² @1064 nm, 10 ns and 2,2 J/cm² @1030 nm, 212 fs.

  • Suitable for high LIDT applications and high-power lasers.

  • Reliable and resistant surface – the structure is inside the bulk.

Grouped product items
SKU Wavelength Range, nmClear Aperture | CA, mmTransmission, %Topological ChargeSubstrate MaterialDiameter, mmThickness, mmAR Coating Price
RPC-343-02
343 ±20
2
>85%
1
UVFS (Corning 7980)
25.4
3
NO
€1,200.00
RPC-343-02-AR
343 ±20
2
>90%
1
UVFS (Corning 7980)
25.4
3
YES
€1,650.00
RPC-343-04
343 ±20
4
>85%
1
UVFS (Corning 7980)
25.4
3
NO
€1,400.00
RPC-343-04-AR
343 ±20
4
>90%
1
UVFS (Corning 7980)
25.4
3
YES
€1,850.00
RPC-343-06
343 ±20
6
>85%
1
UVFS (Corning 7980)
25.4
3
NO
€1,850.00
RPC-343-06-AR
343 ±20
6
>90%
1
UVFS (Corning 7980)
25.4
3
YES
€2,300.00
RPC-343-08
343 ±20
8
>85%
1
UVFS (Corning 7980)
25.4
3
NO
€2,100.00
RPC-343-08-AR
343 ±20
8
>90%
1
UVFS (Corning 7980)
25.4
3
YES
€2,550.00
RPC-343-10
343 ±20
10
>85%
1
UVFS (Corning 7980)
25.4
3
NO
€2,800.00
RPC-343-10-AR
343 ±20
10
>90%
1
UVFS (Corning 7980)
25.4
3
YES
€3,250.00
RPC-343-15
343 ±20
15
>85%
1
UVFS (Corning 7980)
25.4
3
NO
€4,850.00
RPC-343-15-AR
343 ±20
15
>90%
1
UVFS (Corning 7980)
25.4
3
YES
€5,300.00
RPC-488-02
488 ±15
2
>85%
1
UVFS (Corning 7980)
25.4
3
NO
€1,200.00
RPC-488-02-AR
488 ±15
2
>90%
1
UVFS (Corning 7980)
25.4
3
YES
€1,650.00
RPC-488-04
488 ±15
4
>85%
1
UVFS (Corning 7980)
25.4
3
NO
€1,400.00
RPC-488-04-AR
488 ±15
4
>90%
1
UVFS (Corning 7980)
25.4
3
YES
€1,850.00
RPC-488-06
488 ±15
6
>85%
1
UVFS (Corning 7980)
25.4
3
NO
€1,850.00
RPC-488-06-AR
488 ±15
6
>90%
1
UVFS (Corning 7980)
25.4
3
YES
€2,300.00
RPC-488-08
488 ±15
8
>85%
1
UVFS (Corning 7980)
25.4
3
NO
€2,100.00
RPC-488-08-AR
488 ±15
8
>90%
1
UVFS (Corning 7980)
25.4
3
YES
€2,550.00
RPC-488-10
488 ±15
10
>85%
1
UVFS (Corning 7980)
25.4
3
NO
€2,800.00
RPC-488-10-AR
488 ±15
10
>90%
1
UVFS (Corning 7980)
25.4
3
YES
€3,250.00
RPC-488-15
488 ±15
15
>85%
1
UVFS (Corning 7980)
25.4
3
NO
€4,850.00
RPC-488-15-AR
488 ±15
15
>90%
1
UVFS (Corning 7980)
25.4
3
YES
€5,300.00
RPC-515-02
515 ±20
2
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€1,200.00
RPC-515-02-AR
515 ±20
2
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€1,650.00
RPC-515-04
515 ±20
4
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€1,400.00
RPC-515-04-AR
515 ±20
4
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€1,850.00
RPC-515-06
515 ±20
6
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€1,850.00
RPC-515-06-AR
515 ±20
6
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€2,300.00
RPC-515-08
515 ±20
8
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€2,100.00
RPC-515-08-AR
515 ±20
8
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€2,550.00
RPC-515-10
515 ±20
10
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€2,800.00
RPC-515-10-AR
515 ±20
10
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€3,250.00
RPC-515-15
515 ±20
15
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€4,850.00
RPC-515-15-AR
515 ±20
15
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€5,300.00
RPC-632-02
632 ±20
2
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€1,200.00
RPC-632-02-AR
632 ±20
2
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€1,650.00
RPC-632-04
632 ±20
4
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€1,750.00
RPC-632-04-AR
632 ±20
4
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€2,200.00
RPC-632-06
632 ±20
6
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€2,550.00
RPC-632-06-AR
632 ±20
6
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€3,000.00
RPC-632-08
632 ±20
8
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€3,250.00
RPC-632-08-AR
632 ±20
8
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€3,700.00
RPC-632-10
632 ±20
10
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€4,830.00
RPC-632-10-AR
632 ±20
10
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€5,280.00
RPC-632-15
632 ±20
15
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€7,800.00
RPC-632-15-AR
632 ±20
15
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€8,250.00
RPC-800-02
800 ±25
2
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€1,300.00
RPC-800-02-AR
800 ±25
2
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€1,750.00
RPC-800-04
800 ±25
4
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€1,750.00
RPC-800-04-AR
800 ±25
4
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€2,200.00
RPC-800-06
800 ±25
6
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€2,550.00
RPC-800-06-AR
800 ±25
6
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€3,000.00
RPC-800-08
800 ±25
8
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€3,250.00
RPC-800-08-AR
800 ±25
8
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€3,700.00
RPC-800-10
800 ±25
10
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€4,850.00
RPC-800-10-AR
800 ±25
10
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€5,300.00
RPC-800-15
800 ±25
15
>92%
1
UVFS (Corning 7980)
25.4
3
NO
€7,800.00
RPC-800-15-AR
800 ±25
15
>97%
1
UVFS (Corning 7980)
25.4
3
YES
€8,250.00
RPC-1030-02
1030 ±35
2
>94%
1
UVFS (Corning 7980)
25.4
3
NO
€1,300.00
RPC-1030-02-AR
1030 ±35
2
>99%
1
UVFS (Corning 7980)
25.4
3
YES
€1,750.00
RPC-1030-04
1030 ±35
4
>94%
1
UVFS (Corning 7980)
25.4
3
NO
€1,750.00
RPC-1030-04-AR
1030 ±35
4
>99%
1
UVFS (Corning 7980)
25.4
3
YES
€2,200.00
RPC-1030-06
1030 ±35
6
>94%
1
UVFS (Corning 7980)
25.4
3
NO
€2,550.00
RPC-1030-06-AR
1030 ±35
6
>99%
1
UVFS (Corning 7980)
25.4
3
YES
€3,000.00
RPC-1030-08
1030 ±35
8
>94%
1
UVFS (Corning 7980)
25.4
3
NO
€3,250.00
RPC-1030-08-AR
1030 ±35
8
>99%
1
UVFS (Corning 7980)
25.4
3
YES
€3,700.00
RPC-1030-10
1030 ±35
10
>94%
1
UVFS (Corning 7980)
25.4
3
NO
€4,850.00
RPC-1030-10-AR
1030 ±35
10
>99%
1
UVFS (Corning 7980)
25.4
3
YES
€5,300.00
RPC-1030-15
1030 ±35
15
>94%
1
UVFS (Corning 7980)
25.4
3
NO
€7,800.00
RPC-1030-15-AR
1030 ±35
15
>99%
1
UVFS (Corning 7980)
25.4
3
YES
€8,250.00
RPC-1550-02
1550 ±40
2
>94%
1
UVFS (Corning 7980)
25.4
3
NO
€1,400.00
RPC-1550-02-AR
1550 ±40
2
>99%
1
UVFS (Corning 7980)
25.4
3
YES
€1,850.00
RPC-1550-04
1550 ±40
4
>94%
1
UVFS (Corning 7980)
25.4
3
NO
€1,850.00
RPC-1550-04-AR
1550 ±40
4
>99%
1
UVFS (Corning 7980)
25.4
3
YES
€2,300.00
RPC-1550-06
1550 ±40
6
>94%
1
UVFS (Corning 7980)
25.4
3
NO
€3,150.00
RPC-1550-06-AR
1550 ±40
6
>99%
1
UVFS (Corning 7980)
25.4
3
YES
€3,600.00
RPC-1550-08
1550 ±40
8
>94%
1
UVFS (Corning 7980)
25.4
3
NO
€5,100.00
RPC-1550-08-AR
1550 ±40
8
>99%
1
UVFS (Corning 7980)
25.4
3
YES
€5,550.00
RPC-1550-10
1550 ±40
10
>94%
1
UVFS (Corning 7980)
25.4
3
NO
€9,550.00
RPC-1550-10-AR
1550 ±40
10
>99%
1
UVFS (Corning 7980)
25.4
3
YES
€10,000.00
RPC-1550-15
1550 ±40
15
>94%
1
UVFS (Corning 7980)
25.4
3
NO
€11,800.00
RPC-1550-15-AR
1550 ±40
15
>99%
1
UVFS (Corning 7980)
25.4
3
YES
€12,250.00

Fabrication of S-waveplate is based on the inscription of self-organized nanograting’s inside fused silica glass using a femtosecond laser.

Beams with radial or azimuthal polarization attract significant interest due to unique optical properties associated with their inherent symmetry. Such beams enable resolution below the diffraction limit and interact without the undesirable anisotropy produced by linearly polarized light.

S-waveplate can be beneficial in polarization-sensitive applications. For example, a radially polarized beam is more efficient at drilling and cutting high-aspect-ratio features in metals. Vector beams are also applicable in optical tweezers, laser micromachining, STED microscopy, and two-photon-excitation fluorescence microscopy.

Acknowledgment. Enabling technology was developed by Prof. Peter G. Kazansky’s group in the Optoelectronics Research Centre at the University of Southampton. Southampton University has applied for patent application and appointed exclusivity in commercializing activities for Workshop of Photonics (Altechna R&D Ltd.).

Technical features

  • High damage threshold | LIDT – 63.4 J/cm² @ 1064 nm, 10 ns; 2.2 J/cm² @ 1030 nm, 212 fs

  • High transmission (no AR coating) – 94% @ 1030 nm, 92% @ 515 nm, 85% @ 343 nm of most SS lasers

  • Large aperture possible – up to 15 mm

  • Topological charges from 1 to 100

  • Wavelength from 257 to 4000 nm

LIDT nanosecond regime
LIDT femtosecond regime
High transmission

Main benefits

  • Allows focusing into smaller spot size (using NA > 0.9)

  • Ensures the same machining properties in all directions

  • Ensures the same cutting speed in all directions

  • Enable ring-shaped intensity distribution in focus (at NA <0.8)

  • Increases cutting speed

  • Suitable for high LIDT applications

  • Suitable for high power lasers

Radial polarization used with high NA > 0.9 (numerical aperture) allows focusing into a smaller spot size comparing with limits described by diffraction.

Normalized intensity of the longitudinal (z-) component of a high-NA (1.32) radially polarized beam at focus and through focus.
Normalized intensity of the longitudinal (z-) component of a high-NA (1.32) radially polarized beam at focus and through focus.

Methods of use

Universal approach

Cylindrically symmetric polarization (radial or azimuthal) generation

  1. Mount a λ/2 waveplate into a kinematic holder.

  2. Place the radial polarization converter into the path of the linearly polarized beam.

  3. Align the center of the converter with the optical axis of the incident laser beam.

  4. Check the alignment with the linear polarizer placed after the converter. The dumbbell shape must be symmetric for all polarizer angles.

  5. Polarization state (radial/azimuthal) of the output beam can be controlled by rotating the converter or the incident polarization (by rotating λ/2 waveplate).

Simplified approach

Cylindrically symmetric polarization (radial or azimuthal) generation

  1. Place the radial polarization converter directly into the linearly polarized laser beam.

  2. Align the center of the converter with the optical axis of the incident laser beam.

  3. Check the alignment with the linear polarizer placed after the converter. The dumbbell shape must be symmetric for all polarizer angles.

  4. The polarization state of the output beam can be controlled by rotating the converter or the incident polarization (by rotating λ/2 waveplate placed before converter).

  1. Baltrukonis, J., Ulčinas, O., Orlov, S., & Jukna, V. (2020). Void and micro-crack generation in transparent materials with high-energy first-order vector Bessel beam. JOSA B37(7), 2121-2127.

  2. Rudolf Weber, Andreas Michalowski, Marwan Abdou-Ahmed, Volkher Onuseit, Volker Rominger, Martin Kraus, Thomas Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing”, Physics Procedia, Volume 12, Part A, (2011), Pages 21-30. doi:10.1016/j.phpro.2011.03.004

  3. Cyril Hnatovsky, Vladlen Shvedov, Wieslaw Krolikowski, and Andrei Rode, “Revealing Local Field Structure of Focused Ultrashort Pulses”, Phys. Rev. Lett. 106, 123901 (2011). doi:http://dx.doi.org/10.1103/PhysRevLett.106.123901 

  4. Yao Bao-Li, Yan Shao-Hui, Ye Tong and Zhao Wei, “Optical Trapping of Double-Ring Radially Polarized Beam with Improved Axial Trapping Efficiency”, Chinese Phys. Lett. 27 108701, (2010). doi:http://dx.doi.org/10.1088/0256-307X/27/10/108701

  5. Hong Kang, Baohua Jia, Jingliang Li, Dru Morrish, and Min Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam”, Appl. Phys. Lett. 96, 063702 (2010). doi:http://dx.doi.org/10.1063/1.3302461

  6. Gilad M. Lerman and Uriel Levy, “Radial polarization interferometer”, Opt. Express 17, 23234-23246 (2009). doi:10.1364/OE.17.023234

  7. Fake Lu, Wei Zheng, and Zhiwei Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light”, Opt. Lett. 34, 1870-1872 (2009). doi:10.1364/OL.34.001870

  8. Weibin Chen, Don C. Abeysinghe, Robert L. Nelson§ and Qiwen Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination”, Nano Lett., 2009, 9 (12), pp 4320–4325. doi:10.1021/nl903145p

  9. Gilad M. Lerman and Uriel Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions”, Opt. Express 16, 4567-4581 (2008). doi:10.1364/OE.16.004567

  10. D. W. Diehl, R. W. Schoonover, and T. D. Visser, “The structure of focused, radially polarized fields”, Opt. Express 14, 3030-3038 (2006). doi:10.1364/OE.14.003030

  11. Tasso R. M. Sales, “Smallest Focal Spot”, Phys. Rev. Lett. 81, 3844–3847 (1998). doi:http://dx.doi.org/10.1103/PhysRevLett.81.3844

  12. A. V. Nesterov, V. G. Niz’ev and A. L. Sokolov , “Transformation problem for radiation with radial polarization”, Volume 90, Number 6 (2001). doi:10.1134/1.1380793

  13. O J Allegre et al, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses” , J. Opt. 14 085601, (2012). doi:http://dx.doi.org/10.1088/2040-8978/14/8/085601 

  14. M. Kraus, M. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization”, Opt. Express 18, 22305-22313 (2010). doi:http://dx.doi.org/10.1364/OE.18.022305 

  15. M.Gecevičius, R.Drevinskas, M.Beresna and Peter G. Kazansky “Single beam optical vortex tweezers with tunable orbital angular momentum”, Appl. Phys. Lett. 104, 231110 (2014). doi:http://dx.doi.org/10.1063/1.4882418

  16. Di Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson “Cladding-pumped ytterbium-doped fiber laser with radially polarized output”, Optics Letters Vol. 39, Iss. 18, pp. 5359–5361 (2014). doi:http://dx.doi.org/10.1364/OL.39.005359

  17. Y Liu, X Ling, X Yi, X Zhou, S Chen, Y Ke, H Luo, S Wen, “Photonic spin Hall effect in metasurfaces with rotational symmetry-breaking”, arXiv preprint arXiv:1407.6088 (2014). doi:http://dx.doi.org/10.1364/OL.40.000756

  18. X Yi, X Ling, Z Zhang, Y Li, X Zhou, Y Liu, S Chen, H Luo, S Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces”, Optics Express 22, 17207-17215 (2014). doi:http://dx.doi.org/10.1364/OE.22.017207

  19. Y Liu, X Ling, X Yi, X Zhou, H Luo, S Wen, “Realization of polarization evolution on higher-order Poincaré sphere with metasurface”, Applied Physics Letters 104 (19), 191110 (2014). doi:http://dx.doi.org/10.1063/1.4878409

  20. Gong, Lei, et al. “Generation of cylindrically polarized vector vortex beams with digital micromirror device” Journal of Applied Physics 116.18 (2014). doi:http://dx.doi.org/10.1063/1.4901574

  21. Zihao Rong, Cuifang Kuang, Yue Fang, Guangyuan Zhao, Yingke Xu, Xu Liu, “Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams”, Optics Communications (2015). doi:http://dx.doi.org/10.1016/j.optcom.2015.05.057 

  22. Mateusz A. Tyrk, Svetlana A. Zolotovskaya, W. Allan Gillespie, and Amin Abdolvand, “Radially and azimuthally polarized laser induced shape transformation of embedded metallic nanoparticles in glass,” Opt. Express 23, 23394-23400 (2015). doi:http://dx.doi.org/10.1364/OE.23.023394 

  23. Xunong Yi, Ying Li, Xiaohui Ling, Yachao Liu, Yougang Ke, Dianyuan Fan, “Addition and subtraction operation of optical orbital angular momentum with dielectric metasurfaces”, Optics Communications, Volume 356, 456-462 (2015). doi:http://dx.doi.org/10.1016/j.optcom.2015.08.011

  24. Guzman-Silva, Diego, et al. “Demonstration of local teleportation using classical entanglement” arXiv:1509.06217 (2015). doi:http://arxiv.org/abs/1509.06217

  25. Yu-Xuan Ren et al. “Tailoring light with a digital micromirror device”, Annalen der Physik Volume 527Issue 7-8,  pages 447–470August (2015). doi: 10.1002/andp.201500111 

  26. Hong Ji et al. “Microstructured suspended core fiber for cylindrical vector beams propagation” CLEO: 2015, OSA Technical Digest (online), Optical Society of America, (2015). doi: 10.1364/CLEO_SI.2015.STu4L.5

  27. Aidas Matijošius et al. “Formation of second order optical vortices with a radial polarization converter using the double-pass technique”, Optics Communications, Volume 349, Pages 24–30, (2015). doi: 10.1016/j.optcom.2015.03.036 

  28. Wenjing Zhang et al. “Robust sky light polarization detection with an S-wave plate in a light field camera” Applied Optics Vol. 55, Issue 13, pp. 3518-3525 (2016). doi: 10.1364/AO.55.003518

  29. Evangelos Skoulas, Alexandra Manousaki, Costas Fotakis and Emmanuel Stratakis, et al. “Biomimetic surface structuring using cylindrical vector femtosecond laser beams” arXiv:1611.03360 (2016). doi:http://arxiv.org/abs/1611.03360

  30. Gang Chen, Zhi-xiang Wu, An-ping Yu, Zhi-hai Zhang, Zhong-quan Wen, Kun Zhang, Lu-ru Dai, Sen-lin Jiang, Yu-yan Li, Li Chen, Chang-tao Wang & Xian-gang Luo, “Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave”, Sci. Rep. 6, 37776 (2016). doi:10.1038/srep37776

  31. Junxiao Zhou, Yachao Liu, Yougang Ke, Yuanyuan Liu, Hailu Luo, et al. “Spin-photonic devices based on optical integration of Pancharatnam-Berry phase elements”, Proc. SPIE, Volume 9931, Spintronics IX, 99310F (2016). doi:http://dx.doi.org/10.1117/12.2236459

  32. Chao Wang, Lun Jiang, Yuan Hu, Zhuang Liu, Ying-chao Li, et al. “Superresolution far-field diffraction spot in the free-space laser communication system due to radially polarized beam”, Proc. SPIE, Volume 10158, Optical Communication, Optical Fiber Sensors, and Optical Memories for Big Data Storage, 101580K (2016). doi:http://dx.doi.org/10.1117/12.2246624

  33. Guadalupe López-Morales, Victor-Manuel Rico-Botero, Rafael Espinosa-Luna, and Qiwen Zhan, “Refractive index measurement of dielectric samples using highly focused radially polarized light (Invited Paper)”, Chin. Opt. Lett. 15, 030004- (2017). doi:10.3788/COL201715.030004

  34. Zhenxing Liu, Yuanyuan Liu, Yougang Ke, Yachao Liu, Weixing Shu, Hailu Luo, and Shuangchun Wen, “Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere,” Photonics Research, Volume 5, 15-21 (2017). doi:https://doi.org/10.1364/PRJ.5.000015

  35. Yachao Liu, Yougang Ke, Junxiao Zhou, Yuanyuan Liu, Hailu Luo, Shuangchun Wen, Dianyuan Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements”, arXiv:1702.00946 (2017). doi:http://arxiv.org/abs/1702.00946

All items listed on the website are custom-made after we receive your order and payment. The fabrication process typically takes 2 to 4 weeks, depending on the specific item ordered. If you choose the AR coating option, an additional 2 weeks will be added to the delivery timeframe. The final delivery date will be provided in the quotation.

Pricing information and shipping durations will be displayed once you select your address.